Create a CmdStanModel with primarycensored Stan functions
Source:R/pcd_cmdstan_model.R
pcd_cmdstan_model.Rd
This function creates a CmdStanModel object using the Stan model and functions from primarycensored and optionally includes additional user-specified Stan files.
Usage
pcd_cmdstan_model(include_paths = primarycensored::pcd_stan_path(), ...)
Arguments
- include_paths
Character vector of paths to include for Stan compilation. Defaults to the result of
pcd_stan_path()
.- ...
Additional arguments passed to cmdstanr::cmdstan_model().
Details
The underlying Stan model (pcens_model.stan
) supports various features:
Multiple probability distributions for modeling delays
Primary and secondary censoring
Truncation
Optional use of reduce_sum for improved performance (via within chain parallelism).
Flexible prior specifications
Optional computation of log-likelihood for model comparison
See also
Modelling wrappers for external fitting packages
fitdistdoublecens()
,
pcd_as_stan_data()
Examples
if (!is.null(cmdstanr::cmdstan_version(error_on_NA = FALSE))) {
model <- pcd_cmdstan_model(compile = FALSE)
model
}
#> functions {
#> #include primarycensored.stan
#> #include primarycensored_ode.stan
#> #include primarycensored_analytical_cdf.stan
#> #include expgrowth.stan
#>
#> real partial_sum(array[] int dummy, int start, int end,
#> array[] int d, array[] int d_upper, array[] int n,
#> array[] int pwindow, data array[] real D,
#> int dist_id, array[] real params,
#> int primary_id, array[] real primary_params) {
#> real partial_target = 0;
#> for (i in start:end) {
#> partial_target += n[i] * primarycensored_lpmf(
#> d[i] | dist_id, params,
#> pwindow[i], d_upper[i], D[i],
#> primary_id, primary_params
#> );
#> }
#> return partial_target;
#> }
#> }
#>
#> data {
#> int<lower=0> N; // number of observations
#> array[N] int<lower=0> d; // observed delays
#> array[N] int<lower=0> d_upper; // observed delays upper bound
#> array[N] int<lower=0> n; // number of occurrences for each delay
#> array[N] int<lower=0> pwindow; // primary censoring window
#> array[N] real<lower=0> D; // maximum delay
#> int<lower=1, upper=17> dist_id; // distribution identifier
#> int<lower=1, upper=2> primary_id; // primary distribution identifier
#> int<lower=0> n_params; // number of distribution parameters
#> int<lower=0> n_primary_params; // number of primary distribution parameters
#> int<lower=0, upper=1> compute_log_lik; // whether to compute log likelihood
#> int<lower=0, upper=1> use_reduce_sum; // whether to use reduce_sum
#> vector[n_params] param_lower_bounds; // lower bounds for parameters
#> vector[n_params] param_upper_bounds; // upper bounds for parameters
#> vector[n_primary_params] primary_param_lower_bounds; // lower bounds for primary parameters
#> vector[n_primary_params] primary_param_upper_bounds; // upper bounds for primary parameters
#> array[n_params] real prior_location; // location parameters for priors
#> array[n_params] real prior_scale; // scale parameters for priors
#> array[n_primary_params] real primary_prior_location; // location parameters for primary priors
#> array[n_primary_params] real primary_prior_scale; // scale parameters for primary priors
#> }
#>
#> transformed data {
#> array[N] int indexes = linspaced_int_array(N, 1, N);
#> }
#>
#> parameters {
#> vector<lower=param_lower_bounds, upper=param_upper_bounds>[n_params] params; // distribution parameters
#> vector<lower=primary_param_lower_bounds, upper=primary_param_upper_bounds>[n_primary_params] primary_params; // primary distribution parameters
#> }
#>
#>
#> model {
#> // Priors
#> for (i in 1:n_params) {
#> params[i] ~ normal(prior_location[i], prior_scale[i]);
#> }
#> if (n_primary_params) {
#> for (i in 1:n_primary_params) {
#> primary_params[i] ~ normal(
#> primary_prior_location[i],
#> primary_prior_scale[i]
#> );
#> }
#> }
#>
#> // Likelihood
#> if (use_reduce_sum) {
#> target += reduce_sum(partial_sum, indexes, 1, d,
#> d_upper, n, pwindow, D, dist_id, to_array_1d(params),
#> primary_id, to_array_1d(primary_params));
#> } else {
#> for (i in 1:N) {
#> target += n[i] * primarycensored_lpmf(
#> d[i] | dist_id, to_array_1d(params),
#> pwindow[i], d_upper[i], D[i],
#> primary_id, to_array_1d(primary_params)
#> );
#> }
#> }
#> }
#>
#> generated quantities {
#> vector[compute_log_lik ? N : 0] log_lik;
#> if (compute_log_lik) {
#> for (i in 1:N) {
#> log_lik[i] = primarycensored_lpmf(
#> d[i] | dist_id, to_array_1d(params),
#> pwindow[i], d_upper[i], D[i],
#> primary_id, to_array_1d(primary_params)
#> );
#> }
#> }
#> }